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(1) Motivation
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Motivation

Long-standing interest in multidimensional poverty

Initial focus : problem of robustness
Intimately connected with the challenge of choosing
weights/cut-off

Infinite number of these vectors, but set of outcomes
(effectively) finite

Led me to the Good-Turing estimator of missing distributional
mass for sensitivity analysis – see ‘Measuring what’s missing:
practical estimates of coverage for stochastic simulations.’
Journal of Statistical Computation and Simulation, 86(9).

More recently I circled back to the same issues, taking a
different track
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(2) Identification via weights/cut-off
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Terminology

To avoid confusion ...
1 Dimensions : refer to underlying indicators of deprivation

(here, binary & assumed given by the data)

2 Domains : are groups of deprivation indicators (e.g.,
education, health, housing)

3 Identification : is the binary decision process that determines
who is counted poor (row-wise operation)

4 Intensity : is the degree of poverty experienced by a unit,
ranging from zero to one

5 Aggregation : is the final step transforming observations on
multiple units to a single overall metric (ignore this here)
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Alkire-Foster (AF) identification procedure

Inputs:
D is an n × m matrix of binary deprivation indicators with n
units and m deprivation dimensions
Elements of D are dij , such that dij = 1 if unit i ∈ {1, . . . ,n} is
deprived in dimension j ∈ {1, . . . ,m}
A normalized vector of weights w⃗ = (w1,w2, ...,wm); and a
cut-off (k )

Output: unit i ’s poverty status is identified from a positive
threshold switching function:

hi = 1

 m∑
j=1

dijwj ≥ k

 (1)

where ∀j : 0 < wj < 1,
m∑

j=1

wj = 1, 0 < k ≤ 1
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Limitation 1: non-uniqueness

Distinct choices for (w⃗ , k) can map to identical poverty
identification results for a given input matrix D.

Examples:

w1 w2 w3 w4 w5 k H M0

1(a) 0.200 0.200 0.200 0.200 0.200 0.800 0.346 0.307
1(b) 0.179 0.156 0.222 0.235 0.207 0.684 0.346 0.303
1(c) 0.165 0.221 0.184 0.211 0.220 0.673 0.346 0.307

c.v. 0.097 0.171 0.096 0.084 0.048 0.098 0.000 0.007

2(a) 0.328 0.047 0.459 0.068 0.099 0.515 0.490 0.422
2(b) 0.300 0.027 0.483 0.050 0.140 0.514 0.490 0.427
2(c) 0.136 0.114 0.409 0.148 0.194 0.536 0.490 0.398

c.v. 0.408 0.724 0.083 0.588 0.331 0.024 0.000 0.036
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Limitation 1: non-uniqueness

Consequences:
Minimally, differentiating poverty definitions by (w⃗ , k) may
give a false sense of precision and specificity.

Weights do not always reliably or directly reflect differences in
the relative importance of each dimension in the identification
process (ranks are not stable) ...

... so, what do really mean by "relative importance"?

Contradiction between finite identification outcomes vs.
infinite (w⃗ , k) choices ...

... but (confusingly?), M0 is sensitive to choice of weights
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Limitation 2: functional restrictions

The Alkire-Foster approach assumes perfect substitutability
between all subsets of intersecting deprivations of a given size.

What does this mean?
For a given choice of (w⃗ , k), order the weights from smallest
to largest: w(1),w(2), . . . ,w(m)

Now, find the smallest p such that:
∑p

j=1 w(j) ≥ k ...

... then all units deprived in at least p deprivations will be
identified as poor ...

=⇒ Any such p-tuple of deprivations is a substitute for any other
in the production of deprivation.
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Limitation 2: functional restrictions

Means we generally cannot encode functions where the
degree of substitutability varies between distinct sub-groups
of deprivation indicators (of length ≥ p)

Example: how to encode ‘one from each dimension’?

Deprivation indicator Dimension Weight

d1 Inadequate sanitation
}

A 1/4
d2 Inadequate housing materials 1/4

d3 No means of transport
 B

1/6
d4 No phone, radio or TV 1/6
d5 No fridge, iron or bed 1/6

k = 1
4 + 1

6 = 5
12? (All A or all B)

k > 1/2? (Requires at least 3 dimensions)
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(3) Identification via minimal bundles
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Extending identification

The previous results reflect the fact the AF procedure relies on
a threshold switching function, which is a restricted (linear) type
of positive switching function (Boolean function).

Insight: more general positive switching functions can be used!

Clarification:
A switching function is just a mapping f : {0,1}m → {0,1},
also known as a voting game
Positive switching functions are monotonically increasing
Any such function is uniquely defined by its set of true points
– all unique combinations of inputs (deprivations) that yield a
positive outcome, T (f ) ⊂ Bm.
Evident from a truth table, which indexes the true points!
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Bundles True points of different identification functions

id. d1 d2 d3 d4 d5 π 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 3

1 0 0 0 0 0 0.089 0 0 0 0 0 0 0
2 1 0 0 0 0 0.082 0 0 0 0 0 0 0
3 0 1 0 0 0 0.021 0 0 0 0 0 0 0
4 1 1 0 0 0 0.125 0 0 0 0 0 0 0
5 0 0 1 0 0 0.107 0 0 0 0 0 0 0
6 1 0 1 0 0 0.048 0 0 0 1 1 1 1
7 0 1 1 0 0 0.006 0 0 0 0 0 0 1
8 1 1 1 0 0 0.024 0 0 0 1 1 1 1
9 0 0 0 1 0 0.000 0 0 0 0 0 0 0
10 1 0 0 1 0 0.000 0 0 0 0 0 0 1
11 0 1 0 1 0 0.000 0 0 0 0 0 0 1
12 1 1 0 1 0 0.000 0 0 0 0 0 0 1
13 0 0 1 1 0 0.000 0 0 0 1 1 1 0
14 1 0 1 1 0 0.000 0 0 0 1 1 1 1
15 0 1 1 1 0 0.000 0 0 0 1 1 1 1
16 1 1 1 1 0 0.000 1 1 1 1 1 1 1
17 0 0 0 0 1 0.001 0 0 0 0 0 0 0
18 1 0 0 0 1 0.008 0 0 0 0 0 0 1
19 0 1 0 0 1 0.006 0 0 0 0 0 0 1
20 1 1 0 0 1 0.053 0 0 0 0 0 0 1
21 0 0 1 0 1 0.017 0 0 0 1 1 1 0
22 1 0 1 0 1 0.039 0 0 0 1 1 1 1
23 0 1 1 0 1 0.012 0 0 0 1 1 1 1
24 1 1 1 0 1 0.115 1 1 1 1 1 1 1
25 0 0 0 1 1 0.000 0 0 0 0 0 0 0
26 1 0 0 1 1 0.007 0 0 0 0 0 0 1
27 0 1 0 1 1 0.003 0 0 0 0 0 0 1
28 1 1 0 1 1 0.047 1 1 1 1 1 1 1
29 0 0 1 1 1 0.005 0 0 0 1 1 1 0
30 1 0 1 1 1 0.017 1 1 1 1 1 1 1
31 0 1 1 1 1 0.016 1 1 1 1 1 1 1
32 1 1 1 1 1 0.151 1 1 1 1 1 1 1

H 0.346 0.346 0.346 0.491 0.491 0.491 0.552



Extending identification

Straight-forward to see that the output vector associated with f
in the truth table is sufficient for poverty identification – i.e. it
encodes each unique bundle of deprivations as either zero or
one.

So we can directly use this to derive the poverty headcount:

H(D; f ) =
∑

x∈Bm

f (x)π(D; x) (2a)

=
∑

x∈T (f )

π(D; x) (2b)

where π(D; x) is the (sample weighted) proportion of
observations from matrix D with bundle x .
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Extended identification in practice

1 Choose a set of m deprivation indicators (perhaps grouped
into broader dimensions);

2 Collapse the observed data, D, into the collection of at most
2m unique deprivation bundles, collecting sample or
frequency weights as desired (by subgroup);

3 Select an identification rule, f which can be any positive
Boolean function or monotonic game;

4 Identify all true points of f (describing which of all feasible
bundles define a unit as poor); and

5 Calculate the multidimensional poverty headcount as per
equation (2b).
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Representing switching functions

Advantage of the AF approach is that threshold switching
functions are easy & compact to write-down.

What about non-threshold functions?

Not necessarily much more complicated:
Nested AF-type formulation : any positive Boolean function
(monotonic voting game) can be expressed as the
intersection of c ≥ 1 threshold functions
Minimal bundles : from monotonicity, we only need the set of
bundles that is minimally sufficient to classify a unit as poor
(i.e., bundles in which all dimensions are ‘swing’) ...Then, the
underlying Boolean function is given by the union of these
minimal deprivation bundles. Example:

f3 = 1[(d1 + d2) · (d3 + d4 + d5) ≥ 1] (3)

18 / 24



Intensity (adjusted headcount)

Without explicit (ex ante) weights, how can one calculate the
adjusted headcount?

Game-theory provides an answer – the ‘power’ of each
dimension indicates which dimensions are (relatively more)
decisive in switching the function from zero to one.

Choice of f =⇒ true points =⇒ power (implicit weights)

Different power concepts:
Banzhaf power : relative frequency of each dimension in the
collection of minimal bundles.

Shapley value: relative frequency each dimension is pivotal
among all true bundles (sequential criteria; not here).
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Metrics of influence for alternative identification
functions

Example:

f1 f2 f3

w⃗ BZ mBZ w⃗ BZ mBZ BZ mBZ

d1 0.200 0.200 0.200 0.328 0.200 0.184 0.250 0.219
d2 0.200 0.200 0.200 0.047 0.100 0.163 0.250 0.219
d3 0.200 0.200 0.200 0.459 0.300 0.286 0.167 0.188
d4 0.200 0.200 0.200 0.068 0.200 0.184 0.167 0.188
d5 0.200 0.200 0.200 0.099 0.200 0.184 0.167 0.188

M0 0.307 0.307 0.307 0.422 0.388 0.387 0.426 0.420

(Various decompositions follow naturally)
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(4) Summary
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Summary

The paper builds on a long tradition of scholarship.

Most of the ideas are not new.

AF approach extremely powerful. ... But, does have limitations
that may be relevant in some situations:

Weights/cut-off choices are non-unique
Only certain poverty definitions can be encoded

Main contributions:
Showed how to extended poverty identification to other
switching functions, represented by the set of minimal
bundles, which nests AF approach as a special case
Suggested use of game-theoretic weights, which are derived
uniquely from the set of minimal bundles

(I have a bunch of R functions that implement the analysis.)
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(5) Future directions?
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Future directions?

Welcome ideas and thoughts on how this work can be applied
and/or extended.

Possible paths:

1 Clarify game-theoretic weight concepts: which is most
appropriate?

2 Place global MPI within this framework (apply game-theoretic
weights; use a ‘one from each dimension’ definition)
... suggestive evidence in the paper, from Mozambique, indicates
material differences, esp. for poverty decompositions

3 Subjective poverty definitions via choice of bundles?

4 Robustness analysis, by varying (minimal) bundles
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